
Neurocomputing 187 (2016) 19–26
Contents lists available at ScienceDirect
Neurocomputing
http://d
0925-23

n Corr
journal homepage: www.elsevier.com/locate/neucom
Face detection using representation learning

Shu Zhan n, Qin-Qin Tao, Xiao-Hong Li
Hefei University of Technology, Hefei, China
a r t i c l e i n f o

Article history:
Received 1 May 2015
Received in revised form
29 July 2015
Accepted 30 July 2015
Available online 3 December 2015

Keywords:
Face detection
Convolutional neural network
Deep learning
Support vector machine
Adaboost
x.doi.org/10.1016/j.neucom.2015.07.130
12/& 2015 Elsevier B.V. All rights reserved.

esponding author.
a b s t r a c t

Face representation is a crucial step of face detection system. In this paper, we present a fast face
detection algorithm based on representation learnt using convolutional neural network (CNN) so as to
explicitly capture various latent facial features. Firstly, in order to improve the speed of detection in the
system, we train an Adaboost background filter which can remove the background most quickly. Sec-
ondly, we use the CNN to extract more distinctive features for those face and non-face patterns that have
not been filtered by Adaboost. CNN can automatically learn and synthesize a problem-specific feature
extractor from a training set, without making any assumptions or using any hand-made design con-
cerning the features to extract or the areas of the face pattern to analyze. Finally, support vector
machines (SVM) are used to detect instead of using the classification function of CNN itself. Extensive
experiments demonstrate the robustness and efficiency of our system by comparing it with several
popular face detection algorithms on the widely used CMUþMIT frontal face dataset and FDDB dataset.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Face detection is the foundation of computer vision and pattern
recognition technology [1,2]. It plays an important role in the face
recognition, facial point detection, facial expression analysis and
other topics [3]. However, because of the illumination, head pose,
partial occlusion, facial expressions and other reasons, the face
detection problem remains a challenge.

The first step in face detection system is to represent the face
images as feature vectors. After obtaining the representation,
various learning algorithms can be applied to perform the classi-
fication task [4]. Therefore, the performance of face detection
algorithm mainly depends on the selected features. As for features,
many studies proposed numerous hand-crafted features. The
encoding methods of these hand-crafted features are designed
manually based on the prior knowledge of face images (e.g., LBP or
SIFT). For example, after Viola and Jones [5] proposed the first real-
time face detector, Haar-like features have been adopted as the
standard feature representation for face detection. Ahonen et al.
[6] proposed to use the LBP features to describe the microscopic
structure of the face. In addition to using a single feature, many
researches use heterogeneous feature types come together to
describe the human face [7–9]: Pan et al. [7] used heterogeneous
feature types, including Haar feature, LBP feature, SURF feature, to
represent face patterns from various aspects, which greatly
improves the performance.
These articles all used hand-crafted characteristics to represent
the human face; although these features also achieved good
results, considerable room for improvement still exists. On one
hand, Chen et al.'s [10] experiments showed that most hand-
crafted features only gave similar results under the high-
dimensional learning framework. It claimed that traditional
hand-crafted representations suffered from a visible performance
bottleneck and most of them were making different tradeoffs
between discriminative ability and robustness. On the other hand,
manually acquiring the optimal feature from data is very difficult.
To avoid the drawbacks of handcrafted encoding methods, a lot of
deep learning algorithms start to look for a new type of feature.
For example, CNN could be employed to obtain simple and effec-
tive facial features [11,12].

In this paper, we propose a novel and effective face detection
system based on CNN learning facial features automatically. First,
we train an Adaboost classifier which can roughly find the position
of faces, filter most background regions quickly, and consequently
improve the detection speed of the system. Then, a feature
extractor called CNN is trained to learn and extract features
automatically. Making use of the obtained features, we train a SVM
classifier for the final classification. The powerful and complex
SVM makes the classification better than the CNN itself, which can
carefully remove those remaining complex non-face patterns that
cannot be ejected by Adaboost.

The rest of this paper is organized as follows: Section 2 pre-
sents an overview of some popular techniques applied to face
detection. Section 3 describes the proposed face detection system.
This is followed by the experimental results and performance
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analysis, presented in Section 4. Finally, Section 5 presents con-
cluding remarks.
2. Related works

There are some significant previous studies about face detec-
tion. These studies can be grouped into four categories:
knowledge-based methods, feature invariant methods, template
matching methods, and appearance-based methods. Among var-
ious face detection approaches, appearance-based methods are
able to learn distinctive face characteristics, so these methods have
attracted much attention. In appearance-based face detection
methods, the general practice is to collect a large set of face and
non-face examples, and adopt certain machine learning techni-
ques to learn a face model for classification. The key issues are
what feature to extract and what learning algorithm to apply.

The boosting cascade framework by Viola and Jones [5] is a
milestone in face detection. The amazing real-time speed and high
detection accuracy of the face detector can be attributed to three
factors: the integral image representation, the cascade framework,
and the use of Adaboost to train cascade nodes. But it still has
several limitations: First, the number of Haar features is too large,
which is usually in hundreds of thousands level for a typical
20�20 sample. Selecting several effective weak classifiers takes a
long time in so many features. Second, the feature representation
capacity of Haar feature is very limited. It cannot well handle
viewpoint, pose and illumination variations. Li et al. [13] proposed
a boosting cascade based face detection framework using SURF
features to outperform Viola and Jones' work. SURF feature is more
distinctive and the number is smaller, so that the feature selection
time is shortened and the performance is improved. Shih et al. [14]
presented a novel face detection method by applying dis-
criminating feature analysis (DFA) and SVM. DFA derived a dis-
criminating feature vector by combining the input image, its 1-D
Haar wavelet representation, and its amplitude projections. In
addition to the above hand-crafted features, there are some
learning-based features. For example, unlike many previous
manually encoding methods, Cao et al. [15] used unsupervised
learning techniques to learn an encoder from the training exam-
ples. And then they applied PCA to get a compact face descriptor.
Although this scheme upgrades the performance, the careful
tuning of each individual module is very labor-intensive. More
important, it is unclear how to ensure the performance of the
whole system by optimizing each module individually.

Usually, how to use these features to achieve best performance
is a process to constantly correct errors and regulate parameters.
Fig. 1. (a) Training of face detection framework
In addition, these features are usually effective only when they are
high-dimensional. And the algorithm is relatively complicated. So
in order to extract effective features simply, CNN began to be
widely studied. In fact, before the Viola and Jones's [5] detector
was published, neural network had been a very popular approach
and achieved state-of-the-art performance at that time [16]. Garcia
et al. [11] applied CNN to face detection. CNN performed self-
driven feature extraction and classification of the extracted fea-
tures in a single integrated scheme. Chen et al. [17] added a pre-
processing step and a single convolutional feature map based on
Garcia's work, which can quickly filter more than 75% of back-
grounds. The rest of the complex patterns were passed to CNN to
deal with. Tivive et al. [18] applied Shunting inhibitory convolu-
tional networks to face detection, which used shunting inhibitory
neurons as feature detectors. It showed the proposed face detector
based on a hierarchical neural network that can classify in-plane
rotated faces in an image, regardless of their orientation. A few
research works have been reported to apply CNN on face related
problems. For instance, Zhang et al. [19] built a CNN that can
simultaneously learn face/non-face decision, the face pose esti-
mation problem, and the facial landmark localization problem. Sun
et al. [12] used CNN to extract the global high-level characteristics
and detect facial landmarks.

About the research on learning algorithm, AdaBoost has been
proven to be an effective algorithm in the area of face detection
since the milestone work of Viola and Jones. After that, variants of
AdaBoost are proposed for improving the performance of face
detector, such as OtBoost [20] . Recently, SVM is an effective
classifier with high accuracy, which is commonly-adopted. It can
determine the best discriminative support vectors for face detec-
tion and classification. However, the detection could not be exe-
cuted in real time when only a single SVM-based detector was
used. So, Pan et al. [7] adopted a coarse-to-fine classifier: in early
stage of the system, it employed GH features to remove simple
non-face patterns as soon as possible. In the middle stage, MB-LBP
descriptors were applied to filter out as many as non-face patterns
efficiently. More discriminative and slower SVM classifier used
SURF descriptors performing the final detection in the last stage of
cascade classifiers to separate face patterns from the remaining
difficult non-face patterns that are similar to each other. Base on
the above method, we also adopt a coarse-to-fine classifier. Firstly,
Adaboost removes most backgrounds quickly. Then only a small
part of candidate faces are passed to the CNN and SVM. This fra-
mework can ensure the speed of the whole system and the
detection rate at the same time.
and (b) testing of face detection framework.
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3. The proposed method

Fig. 1 shows the basic process of training and detecting human
face. All training samples were scaled to a base resolution of 28�28
pixels, then histogram equalization was performed to decrease the
variation caused by illumination changes. In the training stage, we
train the three models: Adaboost, CNN, and SVM. In the testing
stage, the input image was multi-scaled scanned and a lot of input
patches were obtained. And the same pretreatments were carried
out for these patches. These patches passed the trained Adaboost
classifier first. If Adaboost classifier judged it as a face, then the
patch would be passed to the next stage for further classification. If
the judgment is no, the patch would be discarded directly. CNN
extracted features of the received patches, and then the features
were passed to SVM to make the final classification.

3.1. The Adaboost based background filter

Giving an image containing faces, most of it are backgrounds,
and faces account for only a small part. Most backgrounds are
obvious and simple, and these backgrounds can be easily filtered
by classifier. However, for those complex backgrounds, we need
more powerful classifier.

The boosting cascade framework by Viola and Jones is a great
breakthrough in the field of face detection. Basically, there are
three key ideas that make it able to build real-time detector: the
integral images for efficient Haar feature computing, the boosting
learning of weak classifier, and the cascade structure for fast
negative rejection. So we employ the detector as our background
filter in the first stage to filter out those obvious backgrounds,
increasing the speed of system, and ensuring the detection rate at
the same time.

It is important to set the threshold of the Adaboost appro-
priately. Setting the threshold too high may cause too many
positive examples to be rejected, reducing the overall detection
rate, and setting it too low may lead to too many pass-through
patches that need to be classified further by the CNN, slowing
down the overall detection process. So a minimum detection rate
of 99.8% and a maximum false positive rate of 50% were set as the
training parameters.

3.2. CNN feature extractor

3.2.1. Feature learning
Feature is a prerequisite of face detection. Its impact on the

final result is of no doubt. If the face data is well described into
facial features, we usually can get a satisfactory result. For face
image, the pixel-level feature has no value. Studies found that for
complex graphics that consist of some basic structures, the
structural-level feature may work. So facing more structured and
more complex graphics, we need much higher level features to
represent them. A high-level expression is a combination of low-
level expressions. More features mean more reference informa-
tion, the accuracy will be improved. However, it can also increase
the computational complexity. So how many layers of features are
the most appropriate? Using deep learning approach to solve this
issue is an ideal solution. The essence of deep learning is to learn
more useful features through a large number of training data to
Table 1
Comparison of detecting time.

Image size Environment Processing time

CNN þ SVM 864�890 MATLAB 130 s
Adaboost þ CNN þ SVM 864�890 MATLAB 3.97 s
construct a machine learning model that has a number of hidden
layers, thus to enhance the accuracy of the classification or pre-
diction. Compared with the manually designed encoding methods,
using the depth model to learn features can portray the rich
internal information of data better.

Recent years have seen many significant improvements in the
area of representation feature learning by introduction of many
depth models such as Deep Boltzman Machines (DBM), Deep
Belief Networks (DBN), CNN, Recurrent Neural Networks(RNN),
Autoencoders and others. The reason behind the success of these
models is the learning of feature representation which is capable
of capturing more intelligent features from the input data. Most of
the models combine low-level representation into high-level
representation, which is abstract, complex, and non-linear.
Among these models, CNN is a powerful bioinspired hierarchical
multilayered neural network that combines three architectural
ideas to ensure some degree of shift, scale, and distortion invar-
iance: local receptive fields, shared weights, and spatial sub-
sampling. Besides, it reduces the number of parameters that need
to be learned through the local receptive field and shared weights,
cutting down the complexity of the model. So we adopt the CNN
as the depth model of learning characteristics.

3.2.2. Convolutional neural network structure
CNN is a multilayer neural network, each layer is composed of

multiple two dimension planes, and each plane is composed of
multiple independent neurons. As shown in Fig. 2, CNN consists of
8 layers, including input layer, convolution layer, sampling layer,
full connected layer and output layer. Layers C1 through C5 con-
tain a series of planes where successive convolutions and sub-
sampling operations are performed. These planes are called fea-
ture maps as they are in charge of extracting and combining a set
of appropriate features. Each unit in a layer receives input from a
set of units located in a small neighborhood in the previous layer.
The small neighborhood is called local receptive fields. With local
receptive fields, neurons can extract elementary visual features
such as oriented edges, end-points, or corners. These features are
then combined by the subsequent layers in order to detect high-
level features.

Layer C1 is composed of six feature maps. Each neuron in each
feature map is connected to a 5�5 neighborhood into the input.
The step is 1, so the size of the feature map is 24�24. Layer S2 is
composed of six feature maps, one for each feature map in C1. The
receptive field of each unit is a 2�2 area in the previous layers
corresponding feature map. Contiguous units have nonoverlapping
contiguous receptive fields. So the size of the feature map is
12�12.

Convolution process: Each feature map unit computes a
weighted sum of its input x by a 5�5 convolution kernel that can
be learned, adds a trainable bias bx , and then passes the results
through Rectified Linear Units (ReLU), obtaining a convolution
layer Cx. We adopt the ReLU as the activation function here. CNN
with ReLU trains several times faster than the traditional CNN with
tanh units, which has a great influence on the performance of
large models trained on large datasets [21].

Cx ¼maxð0;KnxþbxÞ ð1Þ
Sampling process: Each unit computes the average of its four
inputs, multiplies it by a trainable coefficient wxþ1, adds a train-
able bias bxþ1, and passes the results through the ReLU. Thus
produce a feature map Sxþ1.

Sxþ1 ¼maxð0;ΣCx �wxþ1þbxþ1Þ ð2Þ
Layer C3 is a convolutional layer with 16 feature maps. Each

unit in each feature map is also connected to a 5�5 neighborhood
in a subset of the feature maps of S2. The feature maps size is



Fig. 2. The architecture of Convolutional Neural Network. Sizes of input, convolution, and pooling layers are illustrated by cuboids whose width and height denote the size of
each map. Local receptive fields of neurons in different layers are illustrated by small squares in the cuboids.

Fig. 3. (a) Linear separable and (b) linear inseparable.
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8�8. Layer S4 is a subsampling layer. The receptive field of each
unit is a 2�2 area in the previous layers corresponding feature
map in C3, like for S2 and C1. Therefore, layer S4 has 16 feature
maps of size 4�4. Layer C5 is a convolution layer, containing 120
feature maps. Each unit in each feature map is connected to a 4�4
neighborhood in a subset of the feature maps of S4. So the size of
the C5 layer feature map is 1�1.

In layer C5, a series of features are extracted and fed to F6. F6 is
the full connected layer with 125 units. Each of the 125 units is
connected to all features maps in C5. The units in full connected
layer compute the dot product between their input vector and
weight vector, to which a bias is added. Then the result is passed to
the ReLU function for nonlinear transformation. We take the
output of the full connected layer as the extracted features of a
sample. Finally, the two neurons of output layer are fully con-
nected to the full connected layer, producing the output which is
used to classify the input image as face or non-face.

The last two layers act as a classifier, the previous ones acting as
feature extractors. In our scheme, instead of using the preliminary clas-
sification of CNN,we train the SVM classifier formore accurate judgment.

3.3. The final classification based on SVM

SVM is a statistical study theory based supervised learning
method. The main idea of the learning machine is to find a
hyperplane to separate the classes while minimizing the experi-
ence error and maximizing geometric edge area so as to keep
balance between the complexity and the generalization ability of
the model.

In linear separable case, all the samples of the same class are on
the same side of the hyperplane, such that a simple line can
separate them as shown in Fig. 3(a).

The training sets are denoted by ðxi; yiÞT ; i¼ 1;2;…;n, where xi
ϵRd stands for the ith sample of the training sets, and yiϵ þ1; �1f g
stands for the ith desired output. The optimal classification surface
is as follows:

f ðxÞ ¼wTxþb¼ 0 ð3Þ
The distance between the classification surface and the most
neighboring sample is r¼ 1= wkk . Thus, the learning problem for
SVM classifier can be formulated as:

maxw;b
2

‖w‖
6minw;b

1
2
‖w‖2 ð4Þ

Subject to the constraint: yigðxiÞ ¼ yiðwTxi�bÞZ1; i¼ 1;2;…;n
However, the optimal separating plane discussed earlier is too

strict in many practical situations. When the samples in a classi-
fication problem can or can almost be separated linearly, the
optimal separating hyperplane can be constructed by solving a
relaxed quadratic programming problem which introduces several
slack variables ξi and a penalization C for cases that cannot be
classified correctly.

minw;b
1
2
‖w‖2þC

Xm
i ¼ 1

ξi ð5Þ

Subject to the constraint: yigðxiÞ ¼ yiðwTxi�bÞZ1�ξi; i¼ 1;2;…;n
; ξi40; C40. C is the punish coefficient for the incorrect cases.

Eq. (5) is a typical quadratic programming problems which can
be solved by the Lagrange multiplier method. Specific derivation
process is not repeated herein. At last, the optimization problem of
objective function can be transformed into following equation:

LðαÞ ¼
Xn
i ¼ 1

αi�
1
2

Xn
i;j ¼ 1

αiαjyiyjx
T
i xj ð6Þ

Constraint is:
P

αiαjyiyj ¼ 0;0rαirC. The training data xi asso-
ciated with nonzero coefficients αi are called support vectors. The
output of SVM is thus defined by

f ðxÞ ¼ sgn
Xn
i ¼ 1

αn

i yiðxTi xÞþbn

 !
ð7Þ

where αn

i ; i¼ 1;2;…;n and bn are obtained by Formula (8).
However, in practice, most problems are nonlinear. Nonlinear

case has been a difficult problem in the field of classification,
which mainly because of the difficulty of constructing nonlinear
discriminant function. In nonlinear case, SVM uses kernel function
to map the original feature into a higher dimension feature space
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where they can be separated using a linear hyperplane. As shown
in Fig. 3(b), a kernel function is used here. So Eq. (8) can be written
as follows:

LðαÞ ¼
Xn
i ¼ 1

αi�
1
2

Xn
i;j ¼ 1

αiαjyiyjKðxi; xjÞ ð8Þ

Kðxi; xjÞ ¼ exp jxi � xjj2
σ2

� �
is a RBF kernel. Constraint is:P

αiαjyiyj ¼ 0;0rαirC. Therefore the final decision function is

f ðxÞ ¼ sgn
Xn
i ¼ 1

αn

i yiKðxi; xÞþbn

 !
ð9Þ

CNN can perform feature extraction, as well as classification in a
single integrated scheme. Its own classification function uses sig-
moid function to map the extracted features into two dimensional
outputs. If the first dimension of output is larger, then classify it as
face, otherwise classify it as non-face. In complex background, if only
simple sigmoid function is utilized for classification, it cannot detect
the faces correctly usually. And the excellent performance of SVM
solving linear inseparable problem makes us choose it as the final
classifier to do a more accurate judgment.
Fig. 4. Examples of
4. Experimental results

For training and testing, a set of 10,000 frontal face images
were collected from various sources. These face images cover 7

151 up–down out-of-plane rotation (Pitch) and 7201 left–right
out-of-plane rotation (Yaw). All face images were scaled to a base
resolution of 28�28 pixels, and then histogram equalization and
intensity normalization were performed. Additionally 20,000 non-
face images were collected as negative samples. The same pre-
treatment was performed to these samples.

We train the Adaboost background filter, setting the minhitrate
as 0.998, maxfalsealarm as 0.5, stage as 3, so Adaboost classifier
can quickly remove more than 80% of backgrounds. Then we train
our CNN, using stochastic gradient descent to upgrade the net-
work parameters, setting the momentum as 0.9, learning rate as
0.005. The trained CNN is utilized to extract the characteristics of
the training samples. Finally, we use the normalized features to
train the SVM classifier. Training SVM needs to set many para-
meters. The most important two parameters are �c and �g. In
order to seek the optimal parameters, we employ the PSO algo-
rithm for SVM parameters optimization.
detecting faces.



Fig. 6. ROC curves of different algorithms on CMUþMIT data set.
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In this section, we present several experiments to evaluate the
performance of our detector. For evaluation we use two challen-
ging public datasets: FDDB [22] and CMUþMIT [16]. They are
widely used to evaluate the face detection methods.

4.1. Evaluation on CMUþMIT data set

The CMUþMIT data set contains test set A, B, C (test, test-low, new-
test) and rotated test set. We use the three test sets (test A, B, C),
without the rotated one, containing 130 images with 511 faces. We first
show some detection results by our detector on the CMUþMIT data set.

The faces in CMUþMIT dataset have different sizes, poses,
expressions, and lighting conditions, but the proposed method can
handle them well, as shown in Fig. 4. For example, Fig. 4 (a) shows
some examples of detecting rotated faces. It proves that our method
can detect not only frontal faces, but also some rotated faces.
Because our training examples cover 7151 up-down out-of-plane
rotation (Pitch) and 7201 left-right out-of-plane rotation, so our
detector can efficiently detect faces within this angle range. If the
rotation angle is larger, the performance will decrease significantly.
The proposed method can detect the occluded faces and hand-
drawn faces as shown in Fig. 4 (b). The proposed method can detect
these faces in the data set effectively because CNN can learn a good
representation of facial features. What is more, the combination of
Fig. 5. Comparison detection examples using our detector and Viola and Jones' detector o
Viola and Jones' detector, whereas examples at the second and fourth row are detectio
CNN and SVMmakes sense. Our detector can detect the faces in low
quality images correctly, as shown in Fig. 4 (c). For those faces under
the dim light as well as the different scale faces, we can also detect
them effectively, as shown in Fig. 4 (d). However, when the illumi-
nation is too dark and the characteristic is not obvious, the detector
may fail to detect those faces. In Fig. 4 (d) there are two very dark
faces missed by the proposed method.
n CMUþMIT dataset (examples at the first and third row are detection results from
n results from our face detector).



Fig. 7. (a) Discrete score ROC curves and (b) continuous score ROC curves for different methods on UMass FDDB dataset.

Fig. 8. Some examples of face detection results on FDDB dataset.
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To illustrate the superiority of our detector against the famous
Viola and Jones' detector, we compare the detection results from
both detectors, as shown in Fig. 5. In particular, we implemented
Viola and Jones' detector using OpenCV2.3.1 with the default frontal
face classifier configuration (i.e. haarcascade-frontalface-default.
xml). As can be seen, because of feature extraction using CNN and
classification using SVM, some examples that are successfully
detected by our detector failed in Viola and Jones' detector. In
addition to, our detector can effectively reduce false positives.

Finally, we compare our algorithm with several related algo-
rithms on CMUþMIT data set. Fig. 6 plots the Receiver Operating
Characteristics (ROC) curves of our method as well as other pop-
ular face detection algorithms including Viola and Jones [5], Li
et al. [13], Jun et al. [23], Zhou et al. [24], Chen et al. [17]. Li et al.
[13] presented a boosting cascade face detection framework which
used SURF features. Jun et al. [23] proposed a face detection
method which used local gradient patterns (LGP) to represent face.
Zhou et al. [24] employed Multi-Block local gradient patterns (MB-
LGP) as the features, and used SVM to perform the classification.
Chen et al. [17] proposed a face detector on a modified CNN.

As shown in Fig. 6, our detector is more efficient than other
algorithms. Especially for cases at low false positives, our detector
can still achieve good results. The comparison with Viola and Jones
[5], Li et al. [13], Jun et al. [23], Zhou et al. [24] proves that
compared with the hand-crafted features, the features extracted
by CNN improve the detection rate in a certain extent. Addition-
ally, the comparison with Chen et al. [17] shows that the combi-
nation of SVM and CNN in our approach outperforms the
traditional CNN.

4.2. Evaluation on FDDB dataset

The CMUþMIT dataset is a little out-of-date as it only contains
gray, relative low-resolution images, and the size of the data set is too
small to reflect nowadays data explosion status. Hence, the UMass
face detection dataset and benchmark (FDDB) is introduced [22]. It
contains 2845 images with a total of 5771 faces under a wide range
of conditions. Besides, it provides a systematic protocol to evaluate
performance of face detection system. We use the “ROC.txt” and the
evaluation code files from FDDB website to generate the discrete
score and continuous score ROC curve for comparison to some
available results on the benchmark [5,25–28] as shown in Fig. 7.

In the discrete setting, a detection window is considered correct if
its intersection-over-union ratio with respect to an annotated face
region is larger than 0.5. This criterion is commonly used in object
detection evaluation. In the continuous setting, the overlapping ratio
is used as a weight for every detection window. This criterion is much
stricter. So we can see in Fig. 7, the detection rate in continuous score
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ROC curve is much lower than discrete score ROC curve. But it is
obvious that our detector outperforms others under both protocols.

FDDB dataset is very challenging because the faces cover var-
ious poses, rotation, occlusion and illumination. Facing the chal-
lenging data set, our method still achieves good results, as shown
in Fig. 8. However, when the facial points are occluded deeply, due
to the lack of sufficient features, these faces will be rejected by our
detector. Such as (b), (d) and (g), there are several faces that are
occluded excessively which cannot be detected by our detector.
5. Conclusion

This paper puts forward an effective face detection system
based on the combination of CNN and SVM. Characteristic is very
important to face detection, choosing which kind of features to
represent human face is a difficult problem. In this paper, we
employ multilayer CNN as a feature extractor to acquire problem-
specific features automatically. In order to quickly filter out most
backgrounds, we train a background filter based on Adaboost
classifier. Thus even if the CNN is very complex, the speed of the
whole system is still fast. In the first stage, all the possible human
faces are roughly captured by Adaboost classifier. Then SVM is
used to further filter non-face, and accurately locate the face
region. In the proposed system, the extracted features by CNN can
be a good representation for face detection, coupled with the
advantage of SVM for classification, which makes the proposed
approach further improve the detection rate. The experiments on
the dataset also prove the validity of our method.
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